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Velocity Modulation of Electromagnetic Waves*

FREDERIC R. MORGENTHALERT

Summary~~This paper deals with electromagnetic wave propaga-
tion through dielectric media whose propagation constants vary as a
function of time,

If the parameters of the medium cannot respond to changes in
the electric and magnetic fields of the propagating wave, the fields
within such media will be linear. Maxwell’s equations are solved for
cases in which the scalar permittivity and permeability vary inde-
pendently with time. When the impedance is constant, an exact solu-
tion is obtained. When the impedance varies, a closed form approxi-
mation is found since an exact solution is not always possible. The
field energy and electromagnetic momentum are derived for a ve-
locity transient and it is seen that, in general, the energy changes
and the momentum remains constant.

The frequency deviation that results when a monochromatic
wave is passed through a section of dielectric with nonconstant ve-
locity of propagation is discussed in detail. An approximate solution
is obtained for the case in which the electrical length of such a section
is small; it is found that essentially linear phase modulation occurs.
The general solution is found for the case in which the electrical
length of section is long and the permittivity of the medium sinusoi-
dally modulated. The optimum length found to give the greatest fre-
quency deviation is shown to be generally impracticable,

It appears that ferroelectric or ferrimagnetic velocity-modulated
dielectrics are feasible, at least for low-power modulators,

I. INTRODUCTION

HIS paper considers the problem of modulating
Tthe velocity of propagation of dielectric media

and the effects which arise when electromagnetic
waves travel through such media.

A time-varying velocity of propagation implies time-
variable permittivity and/or permeability. This imme-
diately suggests that ferroelectrics or ferrimagnetics,
respectively under the influence of external electric or
magnetic fields, might be suitable means of obtaining
velocity-modulated media.

Section II contains the mathematical solution to
Maxwell's equations for the general case of independ-
ently time-varying u and e. The special case of a velocity
step transient is considered by physical reasoning and
the energy densities of the modulated waves are evalu-
ated in Section III. The frequency variation of mono-
chromatic waves passing through a dielectric slab whose
velocity of propagation varies homogeneously as a func-
tion of time is derived in Section IV. Numerical results
based on the published parameters of a particular ferro-
electric are given.

* Manuscript received by the PGMTT, July 2, 1957; revised
manuscript received, August 5, 1957. This paper is based on a Master
of Science thesis submitted to the Electrical Engineering Department
of the Massachusetts Institute of Technology, Cambridge, Mass.;
June, 1956.
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II. SoLuTiON OF MAXWELL'S EQUATIONS WHEN
THE PERMITTIVITY AND PERMEABILITY
VARY wiTH TIME

The behavior of an electromagnetic wave passing
through a dielectric with time-varying velocity of
propagation can be predicted if the solution to Max-
well’s equations is known when the permittivity and
permeability are functions of time.

Assume a charge- and current-free region where u
and e of the medium are functions of time. The wave
equations for a TEM mode propagating in the g direc-
tion become!

9L . .

S ekl Gk OB, + (et BOE, (D)
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oo = el (et 29I £ e+ B H. (D)

The fields may be written in the form
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E = = (det#: 4- Be e, {3a)
eV
where Wy is given by
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Special Case

From the form of (3) and (4) it is obvious that Wx
will equal Wy only if u and € are constants or if their
ratio is always constant. If [u(f)/e(t) =72] is constant,
then it is seen that the ratio of the electric field to the
magnetic field will likewise be invariant and so the two
fields are in space and time phase. Under these condi-
tions an exact solution of the fields is

1 F. R. Morgenthaler, “Velocity modulation of electromagnetic
waves,” M.S. thesis submitted to M.I.T., Cambridge, Mass.; June,
1956.
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E(z, ) = qH(z, [) = — etBeghi®Infare, (3)

€

where § takes on eigenvalues subject to the boundary
conditions; a series of terms like (§) is the general solu-
tion which can be verified by direct substitution. There
will be no reflections as long as the impedance of the di-
electric remains constant and strictly progressive waves
are possible.

It is seen that

TS
O = i~ w0

The velocity of propagation is given by the same form
as when u and e are constant.
The total phase of the wave given by (5) is

B8 dt
o=
n €

and the instantaneous frequency is given by
do
f)y = — = Bu(l). 7
() 7 ® (

(6)

Eq. (7) indicates that the frequency is simply pro-
portional to the velocity of propagation and this is true
if it is remembered that the derivation is based on the
assumption that ¢ and € do not vary with position. This
implies that the medium is infinite in extent and, more-
over, that any wave now in the dielectric has always
been there and has been influenced by any variation
in velocity that has occurred since the infinite past.
It is appropriate to point out here that the separation
of the partial differential equation implies that the
space variation of the wave is unaffected by any changes
in u and e. Consider in connection with this that at some
point in the distant past a wave train of length L and
frequency f1 was started in the medium and that at
that time u and e were stationary with time. This wave
train is characterized by the frequency fi and some con-
stant velocity of propagation ;. It therefore has a wave-
length A = /f1. Now suppose that the velocity of propa-
gation suddenly changes to some new value .. All por-
tions of the original wave train will be acted upon simul-
taneously, that is, slowed down or speeded up together.
The new wave train will therefore still be of length L and
the space waveform will not have changed. This means
that the wavelength still has the same value A\; but be-
cause v=/\ it follows that the frequency must have
changed to a value fa =v/A1; hence, fo/fi =v2/v1. Eq. (7)
is merely expressing this fact in general terms. So long as
the original wave stays in the medium its frequency will
follow the velocity changes of the medium. If a fresh
wave enters the dielectric, it will not, of course, become
subject to the past history of the medium. For example,
if a new wave train of length L and frequency /1 (as
before) enters the dielectric after the velocity has
changed from v, to v,, then its frequency will still be f;
and its wavelength will change to A= (vo/v1)A1. The
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total length will be (v5/91)L instead of L. If the velocity
now changes to some new value, the frequency will
change accordingly and the wavelength will remain con-
stant.

The exact solution obtained for the special case of
constant impedance is illuminating but not very useful
since in practice the impedance will not remain constant.
It is desirable to solve (3) and (4) for the general case
when p and e vary independently with time. No exact
solution is possible and the task remains to find a suit-
able approximation. A series solution is difficult to inter-
pret physically and so a closed form solution is prefer-
able. Since the equation to be solved is a second-order
linear differential equation, the Liouville approxima-
tion? offers hope and turns out to be entirely suitable.

The fields are then given by

E(z, 1) ~—, = et Bzt ipf( di1Vie) ©
and
H(z, 1) >~ 4_ e iBegtiBf(atVie) (9)
v ude

For slowly varying u and ¢, reflections are small and
progressive waves are possible. As was shown previously
for the special case of constant impedance, the instan-
taneous frequency is proportional to the velocity of
propagation. The physical interpretation given before
is also applicable in this situation. The previous re-
marks concerning eigenvalues of 8 apply here also so
that (8) and (9) are, in general, infinite series.

III. SoLuTION OF STEP TRANSIENT FROM
PrvsicarL REAsONING

The fact that the general partial differential (1) and
(2) were separable led to the physical interpretation
that the space variation of a wave is invariant after it
once enters a dielectric having time-varying param-
eters. The transition across the boundary will cer-
tainly cause space distortion but once this has hap-
pened no further perturbations of space waveform will
occur until the wave leaves the medium. During the
journey through the dielectric, all of the individual fre-
quency components of the wave will follow the varia-
tions of the velocity of propagation. The physical pic-
ture of the phase variations of the electric and mag-
netic fields is clear: since the wavelength remains con-
stant and the velocity does not, the frequency must
change to fulfill the condition v=f\. The important
point to be realized is that the frequency does not nec-
essarily remain invariant as a wave passes through a
series of different dielectrics. That this is so in the usual
case is only because the velocity of propagation is not a
function of time.

It is desirable to understand why the amplitudes of

2 S, Schelkunoff, “Applied Mathematics for Engineers and Scien-
tists,” D. Van Nostrand Co., Inc., New York, N. Y.; p. 210, 1948.
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Fig. 1

the electric and magnetic fields vary as they do. Con-
sideration of the instantaneous flux and charge offers a
convenient method of obtaining this physical picture.
The simple step transient in Fig. 1 offers an easily an-
alyzed example that demonstrates all the relevant prin-
ciples. The transient electromagnetic wave is propa-
gated through a variable dielectric whose constants are
given as functions of time. Both u and e are assumed to
step from their initial values p1 and € to ue and e, re-
spectively (Fig. 2). The initial velocity of propagation
is v1=1/V/ e, and the final value is v2= 1/ uses- Since
the velocity is constant except at the jump, the stand-
ard wave equation must apply except at the discon-
tinuity. From the previous discussion it is clear that the
space waveform, but not the amplitude of the transient,
will be invariant.

At the instant of the jump the total charge Q and the
total flux ¥ must remain constant. An invariant Q and
¢ imply that D and B, respectively, do not change in-
stantaneously.

Before the step (£ <ts)

B = uH,, (10a)

D = €1E1. (10b)
After the step (¢>4o)

B = I“?H?) (113,)

D = eEs. (11b)

The most general form of Es and H, is for both fields
to have a backward as well as a forward traveling-wave
component.

H, = Hyt — Hs,
E. = E2+ + Eg_.

(12a)
(12b)

The characteristic impedances of the dielectric are

wr B

= — = t < tg, 13a
7 T 0 (13a)
wr  Es
9 = — = t > to. 13b
1 il 0 (13b)
The combination of (10a) through (11b) yields

B = wH, = p(Hs" — Hy), (14a)

D=eFE = 62(E2+ —+ Eg_). (14b)
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The solution for this pair of equations gives
1 /¢ ) €1
B = __<_1 n ;_1> E,
2 \ e M€
Ne { M1 ;1‘6:
= ——<_ + “) H;i = nH,™, (153)
2 \u2 M2€2
1 /e prer
Eym=——— _— El
2 \e Mo€s
N2 (K1 ﬁ;:
= -<_’“ - /‘/ )Hl = 772H2_. (15b)
2 \us o€o

For the special case when ni=ny=n, or equivalently
wi/pe=€1/€, (15a) and (15b) reduce to

€1 M1
Eyt =~ Ey = — 1 = 770H2+, (163,)

€ I3

Ey = Hy = 0. (16b)

Under these conditions of constant impedance there is
no reflected wave.
For the case where ui=ps, (15a) and (15b) become

1 €1 :1_
Eyf = —{—+ — B = 7)232+,
2 €2 €2
1 /e €1
Ey=—|— — }Ey = nHy.
2 €9 €9

If ¢ and e do not differ greatly, E; will be small com-
pared to Es+ and may be neglected without great loss
of accuracy. In that event Es* can be approximated by

(17a)

(17b)

€1
Est o~ — By~ 9 Ho .
€2

(18)

Eq. (18) indicates that the exact solution obtained for
the case of constant impedance may be a reasonable
approximation when one of the dielectric parameters
remains invariant. The Liouville approximation is of
slightly different form in that the amplitudes of D and
B are not constant.

Energy Density

The uniform step transient of Fig. 1 has a total
energy given by

1
U= f (eF? + pH?)AV, (19)
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where the integration extends throughout the entire
volume. Prior to ¢, the initial energy Ui is given by

U, = %(GlEl2 + Nlng) V. (20)

The volume energy density is defined as u=dU/dV.
For the initial wave

U1 — 61E12 == M1H12. (21)

After the velocity transient (¢>{o), the fields are given
by E2=E2++E2*, and H2=H2+—'H2_.

density is then
1 € M1
o (4 2)
2 €2 M2

The energy gain is defined as #s/4; and given by

e _ i(g n ﬂ),

U1 2 \e 123
The apparent violation of the conservation of energy
is reconciled when it is remembered that the difference
in energies is needed to do work upon the fields within
the dielectric and p and € are changing. It is apparent
that here is a mechanism for changing the energy level

of an electromagnetic wave. That the frequency changes
as well has already been shown.

The energy

(22)

(23)

Electromagneiic Momentum?

—
The electromagnetic momentum g of a field is given
by
N
8= (24)
—
where v is the velocity of propagation and S is Poyn-
ting's vector. With reference to the problem just dis-
cussed, the original fields are described by (15a) and
(15b). It is obvious that

g = avmea B (25)

Since S:= (w€1/use2) E1?, the final value of momentum
is given by

g2 = 61\/lr€1E12 = §1. (26)

This important result, derived for the special case of
the step transient, is also true for the general case; even
though energy may be added or subtracted from the
electromagnetic field by varying the velocity of propa-
gation of the medium through which it passes, the elec-
tromagnetic momentum of the field is unchanged.
Since the momentum is associated only with the
propagated field and not the standing-wave field, it is
clear that the Liouville approximation should predict

conservation of momentum also. The fact that the exact
g

Ss is given by the approximation ensures that this is
indeed true.

3 J. Stratton, “Electromagnetic Theory,” McGraw Hill Book Co.,
Inc., New York, N. Y., pp. 103-104; 1941.
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IV. THE DIELECTRIC MODULATOR

A time-variable dielectric (Fig. 3) extends from z=0
to =1L and is assumed homogeneous throughout. A
monochromatic wave passes through the section.

It can be shown that the equation for a wavelront
propagating with nonconstant velocity* is

dz
E = Egsin [wc <t — f —->] . 2n
v
The transit time is defined as
dz
T=|— (28)
v
Since the total phase of the wave is given by
dz
¢’=wc(t—f__>> (29)
v
the instantaneous frequency is
d
w(l) = w. (1 - — T). (30)
dt

Thin Sections

If the dielectric slab is very thin, the velocity can be
approximated as constant for any given wavefront and
dependent only upon the time that the wavefront en-
tered the medium during the modulating cycle.® Under

these conditions
L dz L
T = f N e
o v o(t)

The instantaneous frequency is approximated by

0) <1+ L dv)
O e v dt)’

(31)

(32)

General Solution

In practical situations the approximation (32) is
nearly always valid. It is, however, instructive to con-

¢ J. C. Slater, “Microwave Electronics,” D. Van Nostrand Co.,
Inc., New York, N. Y., pp. 268-269; 1950.

5 This is analogous to the situation found in klystrons where the
velocity of an electron is assumed to be constant while it passes
through the narrow accelerating gap but dependent on the time that
it entered the gap.
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sider the general case when the velocity cannot be as-
sumed constant for the transit interval. The transit time
for the entire length L is given by

L dz

o[

q v

In this equation, f; is the entrance time of a wavefront

and £ is the exit time of the same wavefront. The inte-
gral may be evaluated as follows:

tl L
f o)t = f d, = L.
to Q

fy = lo. (33)

(34)
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which is the form of linear phase modulation where

bemee L
wg = — 410
o
and
wyg bl )
g = — = —n (42)
W Vo

If L is electrically long so that the velocity cannot be
assumed constant over the transit time interval, then
the integral (34) must be evaluated. The instantaneous
frequency may be shown to be approximately?

sec? (wmil)
w(ly) =~ 2 -
[ 2 tan (%ﬁi) + b ]J
Vi
2t (f’l"ii> e —
sec? I_tan"1 - i_ | - wnlv/4 ~ b“}w
X L Vi~ b )) 42, ° B 43)
“ — !- { 2 tan (wmz‘1> + b o ’
14 {Zi;ﬁ tan | tan~1 2/ _enlva—b b
!_ \ 2 L VA= B 4z, )

Therefore, f(ti, o) =L, or to=g(t, L) and
T =t — glt, L).

Sinusoidal Modulation

(35)

In the case of monochromatic waves passing through
a homogeneous dielectric slab whose permittivity is a
sinusoidal function of time, if € is given by

e = K'e(1 + b sin wuf), (36)

and u=uq, then the velocity of propagation is given by
a

P e
V1 4+ b sin wat

—

70 (37}

VK woeo
where K’ is the dielectric constant at the chosen operat-
ing point.

If the dielectric is electrically thin, then the approxi-
mation (32) can be used. Under these circumstances the
instantaneous frequency of the wave emerging from
the dielectric is

) l:l oL COS Wl 38)
Dol — —— e |
of ¢ 20, V1 4 bsin wnt
and the total variation of frequency
b Lwnws COS wpt
A(U(lf) oY — o (39)
20671 ~+ b sin wml
If b is very small, (39) becomes
b Lwpw,.
Aw(l) o — ————— €08 wal, (40)

2‘1‘0

when (52&2). Note that if (w.LA/4—105%)/4ve=Kr
(K=0,1,2,3-..), the frequency will be constant and
equal to w,. This means that if the length L is such as to
require an integral number of modulating cycles to
elapse before a wavefront passes completely through,
then surely all wavefronts will have exactly the same
transit time. Since the frequency variation is propor-
tional to the rate of change of transit time, it is obvious
that no frequency variation will take place. These null
lengths are given by

47[(7?‘7)0
- wm'\//4 - b‘“’

(K=0,1,2,3.--). (49
Since the frequency behavior is periodic, there is no ad-
vantage to be gained in making 7. any longer than some
value within the first interval. The optimum length
modulator that will result in the greatest frequency
variation is evidently somewhere within the interval

4'0(: -
wn/+ — b2

0 < Lopt <

Straightforward maximization shows that the midpoint
of the interval yvields the optimum length.
It was assumed in the derivation of (43) that 2.

It is therefore permissible to write
L o C (4[‘)
0, o Ty = "‘:Tm, Jd
" 20/ K’

where ¢ is the {ree space velocity of light, and 7,. is the
modulating period,
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The maximum and minimum values of w for this
optimum length may be shown to be

240 2—b
w, and
2—b 2+ b

We

respectively.

It is obvious that the optimum length modulator is
feasible only when the modulating frequency is very
high. For low modulating frequencies, a modulator of
any physically practical length is well within the as-
sumptions used in deriving (40), and the frequency vari-
ation is essentially pure phase modulation.

Numerical Results

Davis and Rubin® have published data on SrTiO;—
BaTiOs (27 per cent SrTiOs) ceramics at 3000 mc. Their
results show that the relaxation spectrum reported by
Powles and Jackson’ has not been reached and that at
room temperature the dielectric constant is approxi-
mately 5000, with a loss tangent of 0.1 (with no bias
field applied). If a field strength of 10 kv per cm is main-
tained, the loss decreases slightly and the dielectric
constant drops to about 2000.

On the basis of Rubin and Davis's data it is possible
to predict the performance of an SrTiO;—BaTiO; modu-
lator operating with a carrier frequency of 3000 mc. If
the ambient temperature is about 25°C, then tan §>~0.1
and K’ varies between 4000 and 2000 for zero kv per
cm and 10 kv per cm, respectively. Assuming a linear
change of K’ with field strength, it is obvious that a dc
bias of 5 kv per cm in series with an ac voltage of mag-
nitude 10 kv per cm peak-to-peak will produce a per-
mittivity given by

e =~ 3000¢o(1 + % sin wyt). (46)

I[f the values of » and K’ in (46) are substituted into
(45) the length of the “optimum modulator” is given by
3 X 108

Lopt o2 ———— cm.

m

(47)

With a loss tangent of 0.1 the loss at 3000 mc is ap-
proximately 15 db per cm. If the maximum allowable
loss through the modulator is 3 db, then f,>15X108
cps. Therefore, as predicted earlier, the optimum modu-
lator is probably not realizable. If a lower value of w,,
is picked and a short L is used so as to keep the loss
down, then (41) and (42) apply. The phase deviation at
3000 mc is

1ixL
3

PR

, (48)

where L is in centimeters.

6 L. G. Rubin and L. Davis, Jr., “Some dielectric properties of
barium-strontium titanate ceramies at 300 megacycles,” J. Appl.
Phys., vol. 24, pp. 1194-1197; September, 1953.

7 J. G. Powles and W. Jackson, “The measurement of the dielec-
tric properties of high-permittivity materials at centimeter wave-
lengths,” Proc. IEE (London), vol. 96, part III, pp. 383-389; 1949,
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V. ConcLusioN

The analysis has indicated that essentially linear
phase modulation may be expected from a dielectric
modulator. The electromagnetic momentum of a wave
going through such a modulator is unaffected by the
modulation process but the energy level will, in general,
be increased. This energy is provided by the modulating
source which on the average does work upon the electro-
magnetic field.

Dielectrics that appear suitable for velocity modula-
tion include ferroelectric ceramics such as the BaTiOs—
SrTiO; compositions. There is a temperature range
above the Curie point where these ceramics are still
nonlinear and where the losses are substantially reduced.
The Curie temperature can be moved over a wide range
by altering the concentration of the strontium atoms.

Ferrimagnetic dielectrics are, of course, also appli-
cable for such use. Although these materials are charac-
terized by tensor rather than scalar permeabilities, the
main results of the analysis can be applied if effective
scalar permeabilities can be determined for the various
directions of propagation.

When an electrostatically controlled ferroelectric is
used in an FM modulator to vary the capacitance of a
tuned circuit, the operating point value of K’ deter-
mines the operating point capacitance, which in turn
determines the carrier frequency. If the value of K’
changes because of temperature or other variations,
then the carrier will also drift. Observe that in the di-
electric velocity modulator that has been discussed, the
carrier frequency is not affected by changes in K’ and
will always be as stable as the generating source. The
phase deviation is, of course, sensitive to changes in the
dielectric constant, and drift owing to temperature
changes may be important.

The maximum modulating rate to which the ferro-
electric ceramics will respond is unknown. The extent
to which the piezoelectric effect enters the modulation
problem is also unknown.

It should be realized that these results assume that
the velocity of propagation of the dielectric medium is
modulated, not by the electromagnetic field passing
through it, but by the modulating bias. If this is true,
the linear analysis derived is valid; if not, the field rela-
tions are nonlinear and much more dithcult to solve.

The velocity will not be modulated by the microwave
field if the medium cannot respond to microwave fre-
quencies, and this apparently is the case. Even if itis
not, the results are applicable if the microwave field is
not sufficiently strong to make significant changes in
the permittivity.
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