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Velocity Modulation of Electromagnetic Waves*

TREDERIC R. MORGENTHALER~

Summary—This paper deals with electromagnetic wave propaga-

tion through dielectric media whose propagation constants vary as a
function of time.

If the parameters of the medkm cannot respond to changes in
the electric and magnetic fields of the propagating wave, the fields

within such media will be linear. Maxwell% equations are solved for

cases in which the scalar permittivity and permeability vary inde-
pendently with time. When the impedance is constant, an exact solu-

tion is obtained. When the impedance varies, a closed form approxi-
mation is found since an exact solution is not always possible. The
field energy and electromagnetic momentum are derived for a ve-

locity transient and it is seen that, in general, the energy changes

and the momentum remains constant.

The frequency deviation that results when a monochromatic

wave is passed through a section of dielectric with nonconstant ve-

locity of propagation is dkcussed in detail, An approximate solution

is obtained for the case in which the electrical length of such a section
is small; it is found that essentially linear phase modulation occurs.

The general solution is found for the case in wtilch the electrical
length of section is long and the permittivity of the medium sinusoi-
dally modulated. The optimum length found to give the greatest fre-
quency deviation is shown to be generally impracticable.

It appears that ferroelectric or ferromagnetic velocity-modulated

dielectrics are feasible, at least for low-power modulators.

1. INTRODUCTION

T

HIS paper considers the problem of modulating

the velocity of propagation of dielectric media

and the effects which arise when electromagnetic

waves travel through such media.

A time-varying velocity of propagation implies time-

variable permittivity and/or permeability. This imme-

diately suggests that ferroelectrics or ferrimagnetics,

respectively under the influence of external electric or

magnetic fields, might be suitable means of obtaining

velocity-modulated media.

Section II contains the mathematical solution to

Maxwell’s equations for the general case of independ-

ently time-varying w and e. The special case of a velocity

step transient is considered by physical reasoning and

the energy densities of the modulated waves are evalu-

ated in Section I I 1. The frequency variation of mono-

chromatic waves passing through a dielectric slab whose

velocity of propagation varies homogeneously as a func-

tion of time is derived in Section IV. Numerical results

based on the published parameters of a particular ferro-

electric are given.
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II. SOLUTION OF MAXWELL’S EQUATIONS WHEN

THE ~ERMITTIVITY AND PERNIIMB ILI’IrY

VARY WITH TIME

The behavior of an electromagnetic wave passing

through a dielectric with time-varying velocity of

propagation can be predicted if the solution to N!ax-

well’s equations is known when the permittivity and

permeability are functions of time.

Assume a charge- and current-free region where p

and e of the medium are functions of time. The wave

equations for a TEM mode propagating k the z direc-

tion becomel

d~fiu ..
= /.L@/ + (k + 2/.J/)E// + (wi + fii)EY,

W
(1)

and

d2H% ..
— = pdzz + (/.4; + 2j6)H. + (j.k + ,@H..

13z~
(2)

The fields may be written in the form

.E=— ~~j (.-l e+jfl’ + ~e-jdz),

where WB k given by

(3a)

‘i”+E+:(:Y-+(:)l’’’’ =O’“b)
and

R= ~z (.4e+’@’ + B@@),

where WH is given by

““’+E+%) -+(+)l’vH=o“b)

(4a)

Special Case

From the form of (3) and (4) it is obvious that WE

will equal TJ7H only if p and e are constants or if their

ratio is always constant. If [u(t) /e(t) = q2 ] is constant,

then it is seen that the ratio of the electric field tcj the

magnetic field will likewise be invariant and so the two

fields are in space and time phase. Under these condi-

tions an exact solution of the fields k

1 F. R. Morgenthaler, “Velocity modulation of electromagnetic
waves, ” NT.S. thesis submitted to M .I.T., Cambridge, Mass.; June,
1956.
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where (3 takes on eigenvalues subject to the boundary

conditions; a series of terms like (5) is the general solu-

tion which can be verified by direct substitution. There

will be no reflections as long as the impedance of the di-

electric remains constant and strictly progressive waves

are possible.

It is seen that

1 1
v(t) = —

ti~(f)~(t) = w(t) “
(6)

The velocity of propagation is given by the same form

as when p and c are constant.

The total phase of the wave given by (5) is

and the instantaneous frequency is given by

cd(t) = $ = ,BZJ(t). (7)

Eq. (7) indicates that the frequency is simply pro-

portional to the velocity of propagation and this is true

if it is remembered that the derivation is based on the

assumption that p and E do not vary with position. This

implies that the medium is infinite in extent and, more-

over, that any wave now in the dielectric has always

been there and has been influenced by any variation

in velocity that has occurred since the infinite past.

It is appropriate to point out here that the separation

of the partial differential equation implies that the

space variation of the wave is unaffected by any changes

in M and e. Consider in connection with this that at some

point in the distant past a wave train of length L and

frequency fl was started in the medium and that at

that time p and e were stationary with time. This wave

train is characterized by the frequency~l and some con-

stant velocity of propagation VI. It therefore has a wave-

length XI = v,/jl. Now suppose that the velocity of propa-

gation suddenly changes to some new value v.2. All por-

tions of the original wave train will be acted upon simul-

tmeously, that is, slowed down or speeded up together.

The new wave train will therefore still be of length L and

the space waveform will not have changed. This means

that the wavelength still has the same value hl but be-

cause v =fi it follows that the frequency must have

changed to a value fz = ZIJA1; hence, f2/fl =v2/vl. Eq. (7)

is merely expressing this fact in general terms. So long as

the original wave stays in the medium its frequency will

follow the velocity changes of the medium. If a fresh

wave enters the dielectric, it will not, of course, become

subject to the past history of the medium. For example,

if a new wave train of length L and frequency ./l (as

before) enters the dielectric after the velocity has

changed from VI to v2, then its frequency will still be fl

and its wavelength will change to & = (vJvl)A1. The

total length will be (v2/vl)L instead of L. If the velocity

now changes to some new value, the frequency will

change accordingly and the wavelength will remain con-

stant.

The exact solution obtained for the special case of

constant impedance is illuminating but not very useful

since in practice the impedance will not remain constant.

It is desirable to solve (3) and (4) for the general case

when p and e vary independently with time. No exact

solution is possible and the task remains to find a suit-

able approximation. A series solution is difficult to inter-

pret physically and so a closed form solution is prefer-

able. Since the equation to be solved is a second-order

linear differential equation, the Liouville approxima-

tion offers hope and turns out to be entirely suitable.

The fields are then given by

A
E(2, t) = —

+’p
# JtSZe+@J(dt/4;c)

and

(8)

(9)

For slowly varying p and c, reflections are small and

progressive waves are possible. As was shown previously

for the special case of constant impedance, the instan-

taneous frequency is proportional to the velocity of

propagation. The physical interpretation given before

is also applicable in this situation. The previous re-

marks concerning eigenvalues of f? apply here also so

that (8) and (9) are, in general, infinite series.

II 1. SOLUTION OF STEP TRANSIENT FROM

PHYSICAL REASONING

The fact that the general partial differential (1) and

(2) were separable led to the physical interpretation

that the space variation of a wave is invariant after it

once enters a dielectric having time-varying param-

eters. The transition across the boundary will cer-

tainly cause space distortion but once this has haP-

pened no further perturbations of space waveform will

occur until the wave leaves the medium. During the

journey through the dielectric, all of the individual fre-

quency components of the wave will follow the varia-

tions of the velocity of propagation. The physical pic-

ture of the phase variations of the electric and mag-

netic fields is clear: since the wavelength remains con-

stant and the velocity does not, the frequency must

change to fulfill the condition ZI=~h. The important

point to be realized is that the frequency does not nec-

essarily remain invariant as a wave passes through a

series of different dielectrics. That this is so in the usual

case is only because the velocity of propagation is not a

function of time.

It is desirable to understand why the amplitudes of

2 S. Schelkunoff, “Applied Mathematics for Engineers and Scien-
tists, ” D. tram Nostrand Co., Inc., New York, N. Y,; p. 210, 1948.
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the electric and magnetic fields vary as they do. Con-

sideration of the instantaneous flux and charge offers a

convenient method of obtaining this physical picture.

The simple step transient in Fig. 1 offers an easily an-

alyzed example that demonstrates all the relevant prin-

ciples. The transient electromagnetic wave is propa-

gated through a variable dielectric whose constants are

given as functions of time. Both p and ~ are assumed to

step from their initial values WI and 61 to M and 62, re-

spectively (Fig. 2). The initial velocity of propagation

is V1= l/\j,ulel and the final value is vz = l/v’,um. Since

the velocity is constant except at the jump, the stand-

ard wave equation must apply except at the discon-

tinuity. From the previous discussion it is clear that the

space waveform, but not the amplitude of the transient,

will be invariant.

At the instant of the jump the total charge Q and the

total flux 1 must remain constant. An invariant Q and

$ imply that D and B, respectively, do not change in-

stantaneously.

Before the step (t< to)

B = I.JIHI, (lOa)

D = qi%. (lOb)

After the step (f> to)

B = /J2H2, (ha)

D = ezEz. (llb)

The most general form of Ea and H, is for both fields

to have a backward as well as a forward traveling-wave

component.

HZ = H2+ – Hz–, (12a)

The solution for this pair of equations gives

For the special case when m = q~ = no, or equivalently

PIII-U = eJ6a, (15a) and (15b) reduce to

E,+ = ~ El = ~ q,H, = qoH2+, (16a)
C2 P2

E,– = H2– = O. (16b)

Under these conditions of constant impedance there is

no reflected wave.

For the case where w =VZ, (15a) and (15b) become

E,-= ;(:- ~3EI=V2H2-. (17b)

If CI and 62 do not differ greatly, E; will be small com-

pared to E?+ and may be neglected without great loss

of accuracy. In that event Eaq can be approximated by

E2 = Et+ + l?2-. (12b)
Eq. (18) indicates that the exact solution obtained for

The characteristic impedances of the dielectric are the case of constant impedance may be a reasonable

approximation when one of the dielectric parameters

t < to, (13a)
remains invariant. The Liouville approximation is of

slightly different form in that the amplitudes of D and

B are not constant.

t> to. (lsb) Energy Density

The uniform ste~ transient of Fig. 1

The combination of (lOa) through (1 lb) yielcls energy ~iven by

B = IJIH1 = LL2(H2+ – H2–)> (14a)

D z clEl = C2(E2+ + E2-). (14b)
u = + j- (6E’ + pw)dv,

has a total

(19)
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where the integration extends throughout the entire

volume. Prior to tothe initial energy U1 is given by

u, = *(WEI’ + /.J,HI’) v. (20)

The volume energy density is defined as u = d U/d V.

For the initial wave

U1 = e1E12 = YIHIZ. (21)

After the velocity transient (t> to), the fields are given

by E,= E,+-FEz-, and Hz= Hz+ – Hz-. The energy

density is then

1
U2= — ell%~

()
~+fi . (22)

2 Cz P2

The energy gain is defined as uz/ul and given by

212

-( )

1 Cl pi
— .

T ;+L “
(23)

U1

The apparent violation of the conservation of energy

is reconciled when it is remembered that the difference

in energies is needed to do work upon the fields within

the dielectric and p and 6 are changing. It is apparent

that here is a mechanism for changing the energy level

of an electromagnetic wave. That the frequency changes

as well has already been shown.

Electromagnetic Momentum3
+

The electromagnetic momentum g of a field is given

by

~=;;
+

(24)

+
where z! is the velocity of propagation and S is Poyn-

ting’s vector. With reference to the problem just dis-

cussed, the ‘original fields are described by (15a) and

(15 b). It is obvious that

gl = eldGE1~. (25)

Since St= (plC1/p2E2)lZ12, the final value of momentum

is given by

gz = CIV’PICIE12 = gl. (26)

This important result, derived for the special case of

the step transient, is also true for the general case; even

though energy may be added or subtracted from the

electromagnetic field by varying the velocity of propa-,,
gatlon of the medium through which it passes, the elec-

tromagnetic momentum of, the field is unchanged.

Since the momentum is associated only with the

propagated field and not the standing-wave field, it is

clear that the Liouville approximation should predict

conservation of momentum also. The fact that the exact
+
St is given by the approximation ensures that this is

indeed true.

3 J. Stratton, “Electromagnetic Theory,” McGraw Hill Book Co.,
Inc., New York, N. Y., pp. 103-104; 1941.
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IV. THE DIELECTRIC MODULATOR

A time-variable dielectric (Fig. 3) extends from z = O

to z =L and is assumed homogeneous throughout. A

monochromatic wave passes through the section.

It can be shown that the equation for a wave front

propagating with nonconstant velocity&is

‘=EOsin[’+s%
The transit time is defined as

Since the total phase of the wave is given by

+=..(+),

the instantaneous frequency is

‘(t)=@c(’-+T).

(27)

(28)

(29)

(30)

Thin Sections

If the dielectric slab is very thin, the velocity can be

approximated as constant for any given wave front and

dependent only upon the time that the wavefront en-

tered the medium during the modulating cycle.G Under

these conditions

s

L dz
T= —?—L—-

OV n(t)

The instantaneous frequency is approximated by

‘(t’=”c(’+$%)

(31)

(32)

General SoL?.@on

In practical situations the approximation (32) is

nearly always valid. It is, however, instructive to con-

4 J. C. Slater, ‘{Microwave Electronics, ” D. Van Nostrand Co.,
Inc., iVew York, N. Y., pp. 268–269; 1950.

s This is analogous to the situation found in klystrons where the
velocity of an electron is assumed to be constmt while it passes
through the narrow accelerating gap but dependent on the time that
it entered the gap.
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sider the general case when the velocity cannot be as- which

sumed constant for the transit interval. The transit time

for the entire length L is given by

s

L dz
T= —=t, –/o. (33) and

au

In this equation, ~o is the entrance time of a wave front

and f] is the exit time of the same wavefront. The inte- ~~ ~

’171Electromagnetic Waves

is the form of linear phase modulat~on where

barna.L
ad = ‘— ) (41)

no

bcoCL
1’3d==fl =--- (42)

um co

gral may be evaluated as follows: if L is electrically long so that the velocity cannot be

assumed constant over the transit time interval, t ken

~:v(t,dt=~’dz= L.
the integral (34) must be evaluatecl. The instantamous

(34) frequency may be shown to be approximately]

x— (’!3)

Therefore, ~(&, to) =L, or tO=K(tI, L) and
.-=

when (bz<<2). Note that if (u~L~4 — 1P) /4vo ==A“n-

T==iI–
(35) (lY=O, 1,2,3. . . ), the frequency will be constant and

g(h,L).
equal to u,. This meams that if the length L js such as to

.%nusoidal Modulation require an integral number of modulating cycles to

In the case of monochromatic waves passing through
elapse before a wavefront passes completely through,

a homogeneous dielectric slab whose permittivity is a
then surely all wavefronts will have exactly the same

sinusoidal function of time, if ~ is given by
transit time. Since the frequency variation is propor-

tional to the rate of change of transit time, it is obvious
~ ~ ~~co(l + b sin %$),

(36) that no frequency variation wili take place. These null

and g =po, then the velocity of propagation is given by
lengths are given by

vu 1 4A”TV0
~= ———._— o 710– ~K,Noeo ‘ (37) L=—z—.

v’1 + b sin c@ ‘
——

*,,L~4’– G
(ZK = 0,1, 2,3,,.). (44)

where K’ is the dielectric constant at the chosen operat- Since the frequency behavior is periodic, there is no ad-

ing point. vantage to be gained in making 1, any longer than some

If the dielectric is electrically thin, then the approxi- value within the first interval. The opti:mum length

mation (32) can be used. Under these circumstances the modulator that will result in the greatest frequency

instantaneous frequency of the wave emerging from variation is evidently somewhere within the interval

the dielectric is 422
O< Loop,<-===.

[

Cos %t
k!(f) = tic 1–~ 1 (38)

wm/4 — b2

2V0 I/l -t- b sin mmt~’ Straightforward maximization shows that the midpoint

and the total variation of frequency of the interval yields the optimum leng-th.

bLmmw. COS wmf
It was assumed in the derivation of (43) that J’<<2.

Ace(t) m – ----–=—.~= “ (39) It is therefore permissible to write

2z’0<1 + b sm o~t c

If b is very small, (39) becomes
L.pi z:- r. = ——

24-K7TW’ ‘
(45)

bLco~w,
Au(t) = – —2;;–- INS c.%t, (40)

where c is the free space velocity of light, and r., is the

modulating period,
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The maximum and minimum values of u for this

optimum length may be shown to be

2+b 2–b
and ————

2–bwc 2+b Wc

respectively.

It is obvious that the optimum length modulator is

feasible only when the modulating frequency is very

high. For low modulating frequencies, a modulator of

any physically practical length is well within the as-

sumptions used in deriving (40), and the frequency vari-

ation is essentially pure phase modulation.

A’umerical Results

Davis and Rubin’ have published data on SrTi03—

BaTi03 (27 per cent SrTiOs) ceramics at 3000 mc. Their

results show that the relaxation spectrum reported by

Powles and Jackson7 has not been reached and that at

room temperature the dielectric constant is approxi-

mately 5000, with a loss tangent of 0.1 (with no bias

field applied). If a field strength of 10 kv per cm is main-

tained, the loss decreases slightly and the dielectric

constant drops to about 2000.

On the basis of Rubin and Davis’s data it is possible

to predict the performance of an SrTiOs—BaTiOs modu-

lator operating with a carrier frequency of 3000 mc. If

the ambient temperature is about 25”C, then tan 6N0. 1

and K’ varies between 4000 and 2000 for zero kv per

cm and 10 kv per cm, respectively. Assuming a linear

change of K’ with field strength, it is obvious that a dc

bias of 5 kv per cm in series with an ac voltage of mag-

nitude 10 kv per cm peak-to-peak will produce a per-

mittivity given by

e = 3000co(l + * sin Writ). (46)

If the values of b and K in (46) are substituted into

(45) the length of the “optimum modulator” is given by

~opt ~ 3x108—— cm.

j.

(47)

With a loss tangent of 0.1 the loss at 3000 mc is ap-

proximately 15 db per cm. If the maximum allowable

loss through the modulator is 3 db, then f~ >15 X 10s

cps. Therefore, as predicted earlier, the optimum modu-

lator is probably not realizable. If a lower value of CO%

is picked and a short L is used so as to keep the loss

down, then (41) and (42) apply. The phase deviation at

3000 mc is

l17rL
tl~=— (48)

3’

where L is in centimeters.

e L. G. Rubin and L. Davis. .]r., “Some dielectric properties of
barium-strontium titanate cerarmes at 300 megacycles, ” ~. AAzZ.
f’hys., vol. 24, pp. 1194-1197; September, 1953.

7 J. G. Powles and W. Jackson, “The measurement of the dielec-
tric properties of high-permittivity materials at centimeter wave-
lengths, ” Proc. IEE (LOWIMZ), vol. 96, part III, pp. 383-389; 1949.

V, CONCLUSION

The analysis has indicated that

phase modulation may be expected

essentially linear

from a dielectric

modulator. The electromagnetic momentum of a wave

going through such a modulator is unaffected by the

modulation process but the energy level will, in general,

be increased. This energy is provided by the modulating

source which on the average does work upon the electro-

magnetic field.

Dielectrics that appear suitable for velocity modula-

tion include ferroelectric ceramics such as the BaTiOs—

SrTi03 compositions. There is a temperature range

above the Curie point where these ceramics are still

nonlinear and where the losses are substantially reduced.

The Curie temperature can be moved over a wide range

by altering the concentration of the strontium atoms.

Ferromagnetic dielectrics are, of course, also appli-

cable for such use. Although these materials are charac-

terized by tensor rather than scalar permeabilities, the

main results of the analysis can be applied if effective

scalar permeabilities can be determined for the various

directions of propagation.

When an electrostatically controlled ferroelectric is

used in an FM modulator to vary the capacitance of a

tuned circuit, the operating point value of K’ deter-

mines the operating point capacitance, which in turn

determines the carrier frequency. If the value of K’

changes because of temperature or other variations,

then the carrier will also drift. Observe that in the di-

electric velocity modulator that has been discussed, the

carrier frequency is not affected by changes in Kr and

will always be as stable as the generating source. The

phase deviation is, of course, sensitive to changes in the

dielectric constant, and drift owing to temperature

changes may be important.

The maximum modulating rate to which the ferro-

electric ceramics will respond is unknown. The extent

to which the piezoelectric effect enters the modulation

problem is also unknown.

It should be realized that these results assume that

the velocity of propagation of the dielectric medium is

modulated, not by the electromagnetic field passing

through it, but by the modulating bias. If this is true,

the linear analysis derived is valid; if not, the field rela-

tions are nonlinear and much more difficult to solve.

The velocity will not be modulated by the microwave

field if the medium cannot respond to microwave fre-

quencies, and this apparently is the case. Even if it is

not, the results are applicable if the microwave field is

not sufficiently strong to make significant changes in

the permittivity.
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